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Summary. A theoretical model to calculate the vibronic intensities induced by the 
odd vibrational modes in centrosymmetric lanthanide complexes is developed and 
applied to octahedral complex ions, LnX6 3-, such as occur in the hexachloroel- 
pasolites Cs eNaLnC16. Both the crystal field and the ligand polarisation contribu- 
tions are evaluated using a standard set of symmetry coordinates. For the crystal 
field term a truncated expansion of the intermediates states is employed rather than 
the more conventional closure approximation. Special care is necessary to ensure 
that the phases of the contributions are correctly determined since the cross-term 
between the ligand polarisation and crystal field contributions is signed. General 
equations applicable to any f "  complex ion are derived and an example of their 
application to the PrCI~- ion is given The agreement with experiment is satis- 
factory. 
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I Introduction 

The intensities off--->f electronic transitions of the lanthanide ions are usually 
treated in terms of the Judd-Ofelt  procedure [1, 2]. Hundreds of applications 
of this method have been published over the last thirty years. The procedure is 
general, although approximate, for cylindrically symmetric ligands within the 
independent systems model. Using this approach it is irrelevant, for the extraction 
of parameters from experimental intensity data, whether the intensity is derived 
from a static non-centrosymmetric ligand field or from odd parity vibrations of the 
environment of the metal ion. The parameterisation scheme employed was not 
intended to and cannot treat the intensities of individual vibronic origins asso- 
ciated with specific normal modes of the complex ion. In recent years a substantial 



100 R. Acevedo et al. 

body of experimental data on the intensities of vibronic origins in the electronic 
spectra of octahedral complexes of the type LnX63- which occur in the cubic 
hexahaloelpasolites, Cs 2NaLnC16, has been obtained, although most of it is at best 
semi-quantitative [3-7]. The relative intensities are observed to vary over several 
orders of magnitude from one electronic transition to another observed in the same 
crystal. It is therefore necessary to extend the Judd-Ofelt procedure to deal with 
this additional data and to attempt to understand and interpret the relative 
intensities of the vibronic origins. 

It is now recognised that, in addition to the conventional crystal field intensity 
mechanism which mixes d or 9 atomic orbitals into the f orbitals under the 
non-centrosymmetric perturbation, it is necessary to include the dynamic coupling 
of the transition multipoles of the metal and the ligands [8-11]. To avoid con- 
fusion of this terminology with Herzberg-Teller vibronic coupling we refer to this 
contribution to the transition dipole as the "ligand polarisation" term. This 
concept has played a major rOle in the understanding of the Judd T ~2) parameter 
and the mechanism of hypersensitivity [1, 9]. 

It is possible to parameterise the vibronic intensities [11-13] but the number of 
parameters is large and only rarely will their be sufficient experimental data for 
their values to be determined reliably. This will be especially difficult if the crystal 
field states are not derived from a preponderant Russell-Saunders term. The 
interpretation of the values of the derived parameters will then be uncertain. 

In this series of papers we shall develop an alternative approach, the calculation 
of relative vibronic intensities for the vibronic origins of specific transitions be- 
tween crystal field states based on simple, but well-defined, models and their testing 
against the experimental data. Our methods are similar to those developed by us to 
account for the relative vibronic intensities of the vibronic origins in the electronic 
spectra of transition metal compounds [14, 15 and references therein], but the extra 
complexity of the fn configuration requires a more formal approach. In our 
treatment of the crystal field contribution for d n systems we considered two ways of 
handling the sums over the intermediate states. The usual approach is to employ 
closure over a complete set of intermediate states to simplify the evaluation of the 
matrix elements, in this case the source of the intensity is unclear (indeed irrelevant 
for the relative intensity in the crystal field limit). An alternative treatment is to 
assume a single suitably chosen intermediate state (which we have termed the 
Liehr-Ballhausen approach after the pioneering work by those authors [16, 17]). 
An advantage of the latter method (apart from its conceptual explicitness) is that, 
for certain transitions, the relative intensity of the vibronic origins becomes inde- 
pendent of the metal ion radial functions (and other parameter values). Both 
methods are capable of accounting for the observed vibronic intensities for several 
electronic transitions but the model parameters are not identical in the two 
procedures. The Judd-Ofelt procedure relies on closure for the extraction of 
parameters but Judd uses both a single f ~  d transition and the sum of an f ~  d 
transition and an f ~  9 transition as the intensity source to estimate parameter 
values. 

Our experimental data is derived from the electronic spectra of the 
CszNaLnC16 compounds where the LnCI~- ions occupy octahedral or nearly 
octahedral sites. These spectra consist (subject to selection rules) of relatively sharp 
magnetic dipole pure electronic origins and broader electric dipole vibronic origins 
corresponding to the three odd vibrational modes V~ (i = 3, 4 and 6) of the anions. 
The latter are coupled to lattice vibrations, particularly to the sodium ion motion, 
but this coupling is not included in our model at present. 
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The only previous detailed theoretical study on these vibronic intensities was 
by Richardson et al. [18]. Unfortunately the model was developed using an 
incorrect assignment of the vibrational modes and when this was corrected the 
agreement with experiment was not good [3, 7, 12, 13]. The method of calculation 
was also very different in that numerical differentiation of the potential field was 
used to calculate the vibronic interaction rather than the exact algebraic method 
that we adopt. 

In this paper we present a method for the calculation of the vibronic intensity 
distribution for specific electronic transitions in LnC1 a- complex ions and provide 
an explicit example in Sect. 4. However, the method may be readily extended to 
other lanthanide complexes. 

2 Vibronic model 

To the first order in the nuclear Cartesian displacement, the Hamiltonian for the 
LnCI~- ion may be written as 

~ = ~ / h : e f +  ~ ~/~ +~i ~ , o ( l i ' s i ) + V ( O h ) + ~ ] ~ f o  kt "" (1) 
• i > j  " 

The first three terms represent the free ion Hamiltonian, V(On) is the coulombic 
potential due to the ligands at the static reference geometry, octahedral in our 
discussion. The symmetry coordinates Ski are linear combinations of the internal 
coordinates which transform according to the irreducible representations of the 
Oh point group and can be derived from the internal coordinates sa by the 
transformation S = Us where Uis unitary. The internal coordinates are related to 
the complete set of Cartesian nuclear displacement coordinates as s = BR. B is, 
in general, not square, and this causes some technical difficulties [14]. Thus 
R = (UB) -1S  where UB is not unitary [14]. Later we shall need to distribute the 
vibronic intensity amongst the true vibrational coordinates, the normal modes 
Qst using the matrix transformation S .= LQ. The required L matrix is found by 
solving the nuclear equations of motion GFL = L A  [14]. F is the force constant 
matrix which may be taken as defining the force field of the molecular system, 
A is the diagonal matrix containing the vibrational frequencies and G contains 
the atomic masses and geometric information. For our purposes Eq. (1) may be 
written as 

af~ = aft{°) + ~ ~ aSk, Jo &'" (2) 

Here the zeroth-order Hamiltonian appropriate for calculations within the f "  
configuration may be parameterised by fitting a sufficient set of experimental 
energy levels to a full free-ion/crystal field calculation. This will give the required 
interelectron repulsion, crystal field and spin-orbit parameters. Since, in many 
cases, the position of a rather large number of energy levels may be studied with 
a degree of accuracy (typically 0.01%) incompatible with both the use of a pure 
metal ion configuration and with the independent systems model, it has become 
common to introduce other parameters to "improve the fit". The physical inter- 
pretation of these parameters is not always transparent. 

Within the independent systems model, the interaction between the metal (M) 
and ligand sybsystems (L) may be described by a coulombic potential. Following 
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Carlson and Rushbrook [19] this may be written as 

~--- (k l  + k 2 )  1 R kt k2 V(Oh) = ~', ~ ~, -(ql q2)t L, OI, OL)DqI(M)Dq~(L), (3) 
L klql k2q2 

where ~, _(q~+q2)t'~"(kl +k2) IRL, OL, OL) is a tensor describing the spatial arrangement of the 
charge distributions due to the metal and ligands. It has become usual to refer to 
the k 2 = 0 contribution as the crystal field component and the k 2 = 1 contribution 
as the ligand polarisation component and to truncate the expansion at this point. 
The physical bases of these labels and procedures have been described previously 
[14]. 

The perturbation in [23 may be then written as the sum of two contributions 
[14, 203: 

9~:(x) CF = -- Z Zte(~t -- ~M) Z D~)(M) { VL~CV~ (L))o, (4) 
L klql 

~gt'~(1) E (-SL -- -SM) 2 Dkq: ( M )  E ( LP ot LP ~-- VL~klql ,~ (L)} o ~tL, ( 5 )  
L klql ~t=X,Y,Z 

where the (~L -- ~t)  are the nuclear cartesian displacement coordinates of the L-th 
ligand with respect to the metal ion. The crystal field CF ~kiq~(L) and ligand 
polarisation LP ~ k ~ q l , ~ ( L )  geometric factors have been tabulated previously in [8] 
and references therein. Thus the total electric dipole transition moment will be the 
sum of two contributions which are independent in the first order. 

For calculations on highly symmetric ions it is convenient to write Eqs. (4) and 
(5) in symmetry-adapted from [14, 20]. 

CF, L • "1 

) ' 3~"~( , ,  z ) t  Mr(i, Z)Skt, (6) 
kt Fyi 0 

LP, L • } 
~,.~ o) )'3(¢~',~(i, z) Mr(i, Q#~(L)Skt, (7) 

FTi 0 

where i is the rank of the central metal ion multipoles and z is a repeated 
representation label. Mr(i, z)is the central ion multipole transforming as the ~-th 
component of the F-th irreducible representation and/ : (L)  is the e-th component 
of the induced transient dipole on the L-th ligand subsystem. 

2.1 Crystal field term 

We now use the perturbation of Eq. (6) to mix opposite parity states F~vin into the 
initial and final states involved in the transition FI71l~ F2~2 m. The crystal field 
contribution to transition dipole moment is then 

Fi~,in 

~alFiT~n><G~nl~cv [G72m>. (8) + ~ (AE,2)-~<G~III ~) 
Fiy~n 

The usual way to proceed is to employ he closure approximation to write 
CF, fl # r ~ r = ~  = 2(AE)-~<rx~ll~Cc~palr2~2ml> (9) 
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and we shall investigate this approach in a later paper in this series. Here we adopt 
a different strategy and write 

CF,~ -~ # = _ (ZLe/AE) 
]Ao~I(LlSlJ1)Flyl l  ct2(L2S2J2)F2~2m "~- ~ ~tl-+~t2 

× Z sk, Z Z Af: <i, ~) 
kt F7 i~ 

× E {(~1 IMr(i, z)[c~') (c~'[ #~]~2) 
~t' 

+ (~ l ip#[c t ' ) (~ ' [Mr( i ,  z)[~2)}. (10) 

Where for simplicity of notation we have abbreviated the initial and final states 
as ~l and ~2, denoted the intermediate state ~'(L'S'J')F'7'n as a', assumed that 
AE,  = AEi2 = AE, and defined the crystal field quantity: 

Ar, r(i, z) = ~L 
Jo 

These quantities have been evaluated for all components that occur forfelectrons,  
a table is available on request from RA. Note that the spin quantum numbers S~, 
etc. are all equal. We expand the operator Mr(i, z) in terms of the standard 
Garstang operators D~ eriC~ as Mr(i, z) r~ i = - = ~q Riq (z)Dq. The expansion coef- 
ficients are available [21, 22]. 

The transition dipole for the F17 i l ~ F272 m transition may then be expressed in 
terms of the transition dipoles associated with transitions between individual 
Russell-Saunders terms. Writing 

I~(LSJ)Ffl) = ~ C(~JMIFfl)[a(LS)JM, etc. 
M 

the matrix elements in Eq. (10) become 

(a~[Mr(i,v)l~')=b(Sx, S') Z Z Rrv(v)C*(alJ1M'lFay~l) 
M1M'  q 

x C(a'J'M')]F'y'n)(al(LiS1)J1M1 ID~ra'(L'S')J'M'), 
(11) 

Applying the Wigner-Eckart  theorem to both sides gives 

(~l II Mr(  i, z)II ~')r = ~(s,, s ' ) ~ ,  ~);.(rm s~ Ir'J') 
x (~ 1 (Li S1 )J1 II Dill a'(L'S')J' ) ,  

where it is convenient to introduce the component independent symmetry deter- 
mined coefficients: 

~.,~,;.(riJ~lr'J')= F. ( -  1)r~+'~g 7~ 7' 

M I M '  q 

x C(~tjtMtIFtv,n)( _ I)j~-M~ ( J1 i J / )  
- - M s  q M'  ' (12) 

where r = 1, 2 . . . .  These coefficients are readily evaluated for the various f ~ f  
electronic transitions using the tables of Griffith [21] and Rotenberg et al. [24]. 
Clearly F ~ F1 ® F ' ;  i = 1, 3, 5, 7, etc. and z = a,b where applicable. A Table is 
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available from RA. Similarly: 

<~1 II roT1 II ~'>, = ~(S1, S')£r~'~.,(r~Ji I r 'J') ( ~ ( Z l S , ) J 1  ILD' II ~'(L'S')J'>. 
(13) 

Inserting these in Eq. (10) results in an expression involving the product of two 
reduced matrix elements, this product may be further simplified as 

(~i(L1S)J1 ]1Dk~ II ~'(L' S)J')  (o( (L'S)J' tl Dk~ [I ~2(LES)J2> 

= ( -  1)k'+k~+LI+L'+J'+S2(2J'+ 1)X/(2d~ + 1)(2J2 + 1) 

L' kl J2 L2 k2 

X (~l  (L1 S)[I Dk~ [I ~'L' S> (~'L'S t[ Dk2 I[ a2(L2S)) (14) 

in the approximation we adopt, the intermediate states are derived from 4f  n- ~ 5d 
configuration so we have 

(LI S(f")II Dk' II L'S(f"-  ~ d) ) (L 'S( f"-  ~d)II Dk2 II L2S)(f") > 

= n( - 1)kl+k2+L2+L'(2L'+ 1)X/(2L a + 1)(2Lz + 1) 

x ~ (LiS( f") l{ f"- i (LaSa)d(L~S))  (15) 
L383 

x ( f " -  I(LaS3)d(LES)IL2S(f')> 

La <fllDk~lld><dllDk=llf>" Li 
x , 2 ki L 2 3 k 2 

The coefficients of fractional parentage are available from Nielson and Koster 
[23]. 

The monoelectronic reduced matrix elements have the following values: 

(dllD ~ IIf> = + x/3eKr)af and <dHD a IIf> = - 2/x/3eKra)af • 

3 Ligand polarization contribution 

For isotropic ligand subsystems the ligand subsystems we have from Eq. (5) the 
ligand polarisation contribution to the total transition dipole moment [14, 15]: 

LP, at 
#Ctl(L1SiJ1)F1711-*at2(L2S2J2)F2~2ra 

LP,~, ~-~SstY~Br~(i,z)(ctilMr(i,z)l~z2), (16) #~1 --*at2 
st Fy iz 

where the ligand polarisation vibronic coupling constants 

LP, L • t 
B,t O, z)  = -- c~ r, ~ ( ,3 S,t o 
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are readily evaluated. A table is available from RA. The matrix element may be 
successively simplified as in the previous section to give firstly 

P~,-*~2 = ( ~ I M  (i, z)l~2)r. (17) 

The matrix element can then be expressed in terms of reduced matrix elements 
using the Yf/, ,);r(F1Jx) ] F'J') coefficients. The reduced matrix element can then be 
further reduced to 

(f"ul(L~S)J~ [ID'IIf"~z(L2S)J2) = ( - 1)s+'+L'+S2x/(2Ja + 1)(2Jz + 1) 

dl J2 i }  
x L2 L1 S (~I(LIS)IID~II~2(L2S))' (18) 

(~l(ZlS)llO'[I ~2(L28)) : nx/(2L1 + 1)(2L2 + 1) (3 IIO~ll 3 )  

x ~ ( _ I ) L + i + L , + 3 { 3 ,  L2 i } ( f n ( ~ l L 1 S  ) 
(~zs) 3 L 

x {[ f" - l (~LS) , f )  ( f"- l (:cLS), f l} f"(~2L2s))  (19) 

and finally, 

(31/Dill3) = 7e(r )ff 0 0 

4 Application to the [3P0, Alg) ~ [3H4, F), transition of the PrCI 3 -  

To provide a simple application of this method for illustrative purposes, we have 
evaluated the relative intensities of the vibronic origins associated with the 
13po, Alo ) ~ 1 3 H 4 , / ' ) , / "  = Alo , Eg, Tlo , T20 transitions. For this system Tanner 
has provided semiquantitative data on the relative intensities of the vibronic 
origins associated with the four electronic transitions [5]. It is important to 
recognise that our model of the vibronic intensities contains no adjustable para- 
meters. No doubt it would be possible to fit the experimental data more precisely 
by varying the model parameters, we believe that this process tends to obscure the 
physics of the processes involved. 

Within the 4f" complex ions (and especially within the 5f" series) there are 
many eases of spectroscopic states not being derived from a pure Russell-Saunders 
term. In the present case the [3po, Alo) state is well separated from the other J = 0 
state whereas the ]3H,, F )  is well separated from the other J = 4 states. Since the 
crystal field and therefore "J-mixing" is relatively small, the states under considera- 
tion here are nearly pure Russell-Saunders terms, nevertheless we include the 
small correction to illustrate the technique. Fitting the observed energy levels of 
Tanner with a simple "complete" electron-electron repulsion (B = 274 cm -1, 
C = 27 cm - 1, D = 2400 cm - 1); crystal field ( ( B , )  = 272 cm-  1, ( B  6 ) = 71 cm-  1 ) 
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and spin-orbit coupling (~so = 750 cm- 1) model gives the following wavefunctions: 

13po, A1)  = 0.99613p0, A )  - 0.01113F,~, A1)  + • • • 

[3H,, A1) = 0.98613H4, A1) - 0.03613F4, A1)  + 0.01413H6, A1) + 

I3H,,, E )  = 0.98713H4, E )  - -  0 .036]  3F2,  E )  - 0.02913F4, E )  + ' ' "  

13H4, T1) = 0.98613H4, T1) - 0.003313F4, T1) + "" • 

]3H4, T2> = 0.98813H4, T2> - 0.01813Fz, T2) - 0.02413F4, T2> + " "  

The transition dipoles of the spectroscopic transitions are then readily ex- 
pressed in terms of the transition dipoles between pure Russell-Saunders terms. 

4.1 Crystal field component 

The crystal field component for each of these can then be evaluated using Eq. (10). 
The electronic part of Eq. (10) associated with a particular symmetry coordinate 
st for 13 po, A a ) ~ 13 H g FT ) transition then becomes 

1 E qls~(3poA1 -~ 4H4F2Y2) = --~ ~ C cv Ar'(k) ~k)(Ax O/rk)   (rk/rz4) 

x v[r r2 ~l<3e°llcklt3G3><3G311ct 
+ ~](A~O/T111 ~ ) ( T 1  l/F4) 

x V [  T1 72Fz FI('3p°llC1113Da)(3DlI[Ckl]3H4~ 

where the :Z coefficients are defined by Eq. (12). Note how the symmetry of the 
initial and terminal states of the transition restricts the Russell-Saunders designation 
of the intermediate states. The crystal field factor cCF= Zre 3AE- l(r)ya(r3)ye 
R - k - 2  is readily evaluated usingoZr = 1, (r3)sa = 0.810A 3, (r)ya = 0.475 ~,, 
AE = 55 000 cm-  1 and R0 = 2.82 A [25]. Using the following two identities: 

~ ) ( A 1 0 [ T t l )  = -  1 and ~)(FkIF24)= ( -  1)r2+r+r2+k+sLrr)(T~l IF4), 

the electronic factor becomes 

°II~t(aP°AI"-*3H4F272)=O'OO2435Ar~(3)vIF y2F2 Tzll ~(tlr)~(F31F24) 

in units of the electron charge. 
Similarly the other required electronic factors may be calculated: 

--, = ~r~a)(T~ 1 IF4), 
72 



Vibronic intensities in centrosymmetric lanthanide complex ions. I. 107 

ql~(3PoAl~aH6F272,=_O.OOO431Arr(5) vIT1 Fzy2 ~1 ~e~)(Tll [Fz6,' 

F~, T1 F2 ql~(3poA1 ~ 3FzFzy2) = 0.01658A~ (1) V ~(1)(T~3 [ F2), 
z ? 2 ?  

+O'OOI60A:r(3) v f  T1F2 

These electronic factors are given in Table 1. 

4.2 Ligand polarization component 

The ligand polarisation contribution to the transition dipole is given by Eq. (17). 
The electronic factors for the 3PoA i ~ 3H4F272 transition may be written: 

F~, • F • qlzt( 3PoA1 ~ 3H4F272)  --  E °~LBst (l, "c)<0~ 1 IM~ (t, z ) l ~ 2 ) .  

The ligand polarization vibronic coupling constants are available from RA, 
the matrix element is evaluated as in Sect. 4.1. Using (r2)ff= 0.410~ z and 
(r*)ff = 0.418 ~4 [25], and evaluating the matrix elements as in Eqs. (18) and (19). 
The ligand polarisation electronic factors are then given in Table 2. 

4.3 Vibrational analysis 

We use the experimental ground state vibrational wavenumbers of v3 = 263 cm-1, 
v4=95cm -1 and v6=76cm -1 [5]. The required vibrational integrals 

Table 1. Calculated crystal field electronic factors for the 3P 0 ~ 3H, transition of PrC163- 

q//lO-4e 

Symmetry coord/ A i E T1 T2 
electronic state 

Sa -26 .24  16.81 15.51 16.81 
S, 9.84 -11 .79  -6 .04  -0 .05  
$6 - -14.01 8.96 -10.33 

Table 2. Calculated ligand polarisation electronic factorsfor the 3Po--~3H 4 transition of 
PrCI~- 

o///10-% 

Symmetry coord/ Ai E T1 Tz 
electronic state 

$3 42.29 -30.43 55.04 
$4 21.15 - 4.97 - 27.52 
$6 - -23 .35  -27 .52  

4.27 
- -  14.95 
- 10.68 
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I(01Qsll)l z may then be evaluated. Using a seven atom model of the PrCI~- 
ion [14], the L-matrix elements are found to be L33 = 0 .205,  L34--= 0.013, 
L43 = -0.158, L4, = 0.297 and L66 ---- 0.237. 

4.4 Intensity calculations 

The remaining steps in the calculation are to collect the contributions due to the 
various components of the electronic eigenfunctions, evaluate the ligand polarisa- 
tion and crystal field components, and the cross-term between team and then 
distribute the intensity amongst the normal models. The resulting oscillator 
strengths are for each transition: 

f ( v 3 )  = 6.94 X 10 - 7  Ag(°-//'3L33 -[- °g4L43)  2, 

f(v4) = 1.95 x 10 -6 de(ollaL34 -t- 0~/4L44) 2, 

f ( v 6 )  ---- 2 .39 × 10 - 6  A~(°-//6L66) 2. 

Inserting the experimental transition energies Ae from Eq. (5) gives the calculated 
oscillator strengths in Table 3, for ease of comparison with the experimental 
relative intensities in emission we also give the individual contributions (Table 4) 
and the relative intensity ratios of the vibronic origins within each electronic 
transition (Table 5). 

Table 3. Calculated oscillator strengths of vibronic origins for the 3P o ~ 3H 4 
transition of PrCI~- 

f ( v l ) / lO  -9  

Vibronic origin/ A1 E T1 T2 
electronic state 

v3 0.38 0.003 54.0 6.0 
v4 35.6 10.0 35.0 6.0 
v6 - 37.0 9.0 11.0 

TaMe 4. Calculated contributions to the dipole strengths of vibronic origins for the 
3po ~ 3H~ transition 

D(vl)/ lO -7  Debyes 2 

Vibronic origin/ A1 E T1 T2 
electronic state 

DC~(v 3) 7,08 4.14 2.51 1.75 
DLP(v3) 4.18 4.38 36.02 1.54 
DCF'LP(v3) -- 10,87 -- 8.50 18.53 3.31 

DCF(v4) 2.76 4.47 1.05 0.01 
DLP(Va) 19.35 1.45 23.06 7.97 
DCF'LP(v4) 14.73 5.09 9.85 -- 0.74 

DCF(v6) -- 5.59 2.28 3.03 
DLP(V6) -- 15.57 21.56 3.24 
DCF'LP(v6) -- 18.63 -- 14.04 6.29 
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Table 5. Calculated relative intensities of vibronic origins for the aP o --, all4 transition 
(Experimental values in parentheses) 
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Vibronic origin/ A1 E TI T2 
electronic state 

va 0.01 [0.25] 0.00 [0.04] 1.00 [1.00] 0.55 [0.04] 
v4 1.00 [1.00] 0.27 [0.00] 0.60 [0.04] 0.55 [0.60] 
v6 - 1.00 [1.00] 0.17 [0.07] 1.00 [1.00] 

5 Comparison with experiment 

Semi-quantitative relative intensity data for the above transitions are available for 
the PrC13 - ion in the cubic elpasolite CszNaPrC16 from [5]. No measurements of 
the oscillator strengths are available. The lifetime of the 3P o state in very dilute 
crystals is about 500 gs, but transitions to states other than 3//4 contribute to the 
relaxation process. Since the intensity mechanism involves a vibronic perturbation 
rather than a static distortion, it would be reasonable to expect the oscillator 
strengths would be at the lower end of the range observed in lanthanide complexes. 
The range of the calculated intensities is consistent with or a little higher than these 
expectations. In our previous work on the MnF2--ion [14, 16] we have empha- 
sised that this type of calculation cannot be expected to give good agreement with 
observed absolute intensities. For example the crystal field contributions is 
strongly dependent on the assumed ligand charge, for simplicity and in the spirit of 
having no adjustable parameters we have assumed unit negative charge resides 
effectively at the nuclear position. A somewhat lower value, consistent with the 
electroneutrality principle [14], would appreciably reduce the calculated dipole 
strength from the crystal field contribution and also improve the agreement 
between the calculated and observed vibronic intensity distribution. In cases where 
the crystal field and ligand polarisation contributions to the transition dipole have 
opposite signs the cross term between them will make a negative contribution to 
the dipole strength. This occurs for 4 out of the 11 non-zero contributions. The 
value of the dipole strength, and hence the calculated relative intensities, will then 
be particulary sensitive to the assumed parameter values. 

An interesting property of the experimental results is the enormous variation in 
the intensity ratios of the v6, 1J 4 and v3 vibronic origins. For each of the aPoA 1 
3H4F 2 transitions, F2 = A1, E and T1, a different vibronic origin dominates the 
intensity of the electronic transition whilst for F2 -- T2 transition all three have 
comparable intensity. The calculation nicely reproduces this exacting test. 

The major disagreement in the intensity ratios is in the ratio of the v4 and 
v3 vibronic origins. There are at least two difficulties with the calculation of this 
ratio. Firstly, the negative contribution from the cross-term occurs for three out of 
the four transitions for either v4 or v3. For the A~ ~ A1, and A~ ~ E transitions the 
oscillator strength of the v 3 vibronic origin is calculated to be particularly low due 
to the almost exact "accidental" cancellation of the contributions from DCF(v3), 
O La (• 3 ), and D cv. La(~) 3)" A small change in any of the parameters or wavefunctions 
makes a large change in the calculated intensities, indeed a reduction in the charge 
on the ligands reduces the crystal field contribution but thereby increases the total 
intensity improving the fit with experiment. Secondly, this calculated ratio of 
oscillators strengths is strongly dependant on the vibrational wavefunctions. There 
is no doubt that our vibrational potential function is inadequate for the Cs2NaPrC16, 
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since the sodium motion which has a wavenumber intermediate between the v4 and 
v3 modes acquires significant intensity by mixing with these modes. 

It is clear that the agreement between calculation and experiment is dependent 
on the inclusion of crystal field, ligand polarisation terms and the signed cross term 
between them. 

6 Conclusions 

The agreement between the calculation and experiment is as good as could be 
expected for such a simple physical model. It appears therefore that the main 
features of intensity mechanism have been understood and accurately modelled. 
Further improvement will require better description of the charge distribution in 
the molecule and a more accurate description of the vibrational potential via using 
a full lattice dynamical model. Work in this direction is in progress, together with 
the application of this isolated ion model to other complex ions. 
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